Markdown to html using Texme

... views
Markdown to html using Texme

Procedure

Suppose you have some markdown document with math in it.

## Billinear forms
 
1. Write down the following billinear forms in vector matrix notation $uAv^{T}$.
   - $\phi(u,v) = 3x_1y_1 -2x_1y_3 +5x_2y_1+7x_2y_2-8x_2y_3+4x_3y_2-6x_3y_3$.
   - $\phi(u,v) = -5x_1y_1 +6x_1y_2 -2x_1y_3+3x_2y_2-6x_2y_3$.
   - $\phi(u,v) = 2x_1y_3 -3x_3y_1+4x_3y_4$.
   - $\phi(u,v) = 4x_1y_1+2x_1y_2-2x_2y_1+3x_2y_2$.
   - $\phi(u,v) = 2x_1y_1-3x_1y_3+2x_2y_2$.
 
and so on...
## Billinear forms
 
1. Write down the following billinear forms in vector matrix notation $uAv^{T}$.
   - $\phi(u,v) = 3x_1y_1 -2x_1y_3 +5x_2y_1+7x_2y_2-8x_2y_3+4x_3y_2-6x_3y_3$.
   - $\phi(u,v) = -5x_1y_1 +6x_1y_2 -2x_1y_3+3x_2y_2-6x_2y_3$.
   - $\phi(u,v) = 2x_1y_3 -3x_3y_1+4x_3y_4$.
   - $\phi(u,v) = 4x_1y_1+2x_1y_2-2x_2y_1+3x_2y_2$.
   - $\phi(u,v) = 2x_1y_1-3x_1y_3+2x_2y_2$.
 
and so on...

Now to render the markdown to the the html, add the below code that loads texme javascript just above the markdown and save the file with .html extension.

filename.html
<!DOCTYPE html>
<title>Title of the Page</title>
<!-- <script>window.texme = { style: 'plain' }</script> -->
<script src="https://heykapil.in/script/texme@1.2.2.js"></script>
<textarea>
 
## Billinear forms
 
1. Write down the following billinear forms in vector matrix notation $uAv^{T}$.
    - $\phi(u,v) = 3x_1y_1 -2x_1y_3 +5x_2y_1+7x_2y_2-8x_2y_3+4x_3y_2-6x_3y_3$.
    - $\phi(u,v) = -5x_1y_1 +6x_1y_2 -2x_1y_3+3x_2y_2-6x_2y_3$.
    - $\phi(u,v) = 2x_1y_3 -3x_3y_1+4x_3y_4$.
    - $\phi(u,v) = 4x_1y_1+2x_1y_2-2x_2y_1+3x_2y_2$.
    - $\phi(u,v) = 2x_1y_1-3x_1y_3+2x_2y_2$.
 
 and so on...
filename.html
<!DOCTYPE html>
<title>Title of the Page</title>
<!-- <script>window.texme = { style: 'plain' }</script> -->
<script src="https://heykapil.in/script/texme@1.2.2.js"></script>
<textarea>
 
## Billinear forms
 
1. Write down the following billinear forms in vector matrix notation $uAv^{T}$.
    - $\phi(u,v) = 3x_1y_1 -2x_1y_3 +5x_2y_1+7x_2y_2-8x_2y_3+4x_3y_2-6x_3y_3$.
    - $\phi(u,v) = -5x_1y_1 +6x_1y_2 -2x_1y_3+3x_2y_2-6x_2y_3$.
    - $\phi(u,v) = 2x_1y_3 -3x_3y_1+4x_3y_4$.
    - $\phi(u,v) = 4x_1y_1+2x_1y_2-2x_2y_1+3x_2y_2$.
    - $\phi(u,v) = 2x_1y_1-3x_1y_3+2x_2y_2$.
 
 and so on...

This will be rendered as here

Styling

...

Thoughts? 🤔

Loading comments...